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Abstract
We present calculations for the band structure of bulk and confined quantum well and quantum
wire GaInNAs structures. To treat this non-randomly alloyed material system we follow
previous approaches in using an Anderson impurity model where the nitrogen localized states
interact with the GaInAs conduction band states. We solve this model using Matsubara Green’s
functions and the associated self-energies which produce a complex band structure where both
the real and imaginary components depend on the concentration of nitrogen. In particular this
approach gives a definite nitrogen dependent lifetime broadening and is different from previous
work in that no artificial input parameters are used. The density of states of the conduction band,
derived from these functions, is strongly altered by interaction with the nitrogen states. The
density of states is required for further optical and transport investigations involving this system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

GaInNAs and GaInNAs/GaAs confined structures, quantum
wells (QWs) and quantum wires (QWWs), are promising
material systems for long wavelength region applications [1].
Nitrogen’s high electronegativity and small atomic radius
cause a strong perturbation of the host matrix resulting in a
large bowing parameter and in an increase in nonparabolicity
of the effective mass. The large bandgap reduction
experimentally observed by Weyers et al [2] was explained
later by the band anti-crossing (BAC) effect [3], assuming
that the nitrogen localized state interacts with the InGaAs
conduction band state. When the number of nitrogen atoms
increases, nitrogen pair states were observed by Liu et al [4].
These and higher order cluster states which are statistically
distributed into the host crystal were also shown later through
LCINS calculations [5]. A 3 × 3 Hamiltonian incorporating
a N–N pair state has been introduced [6] which allows
interaction with one other state. More detailed information
can be obtained by the empirical pseudopotential method
(EPM) [7] and by tight-binding calculations [8].

Despite the huge popularity of the BAC model, it fails to
provide sufficient information on the nature of the resultant
mixed states. This has been considered by Wu et al [12]
and Vaughan and Ridley [13], where Green’s functions were

used to describe the conduction band states after mixing.
In these treatments, the broadening of the impurity states
was dependent upon the density of states (DOS) of the host
matrix, which was essentially taken as constant. In the
current approach a nitrogen concentration dependence of the
broadening of the impurity states is derived, which results in
a different expression for their energy shift. This approach
can also be used to calculate the density of states required for
optical and transport analysis [10, 11]. Despite the different
approximation, we show that all these quantities are in general
agreement with those in [12, 13].

Throughout this work we consider two impurity energy
levels. The first level represents single N atoms and the second
an averaged N–N pair and cluster energy state distribution.
While the energy of the single N level is fixed relative to the
conduction band minima, the energy of the N pair and cluster
states spans a distribution of energies reflecting different site
distributions and other factors which will depend upon growth.
To understand the importance of the energy distribution of the
pair/cluster states we model it by a mean, in various energy
positions within the calculated distribution spectrum.

In section 2 we present the model and results for the
impurity and conduction band states, before and after mixing.
In section 3 the density of states are derived based on the
previous assumptions. In section 4 of the paper, we discuss
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the implications that the alternate shape of the density of states
may have in transport analysis in dilute nitrides.

2. The model

When non-interacting electrons of InGaAs conduction band
(extended |s〉 states), interact with more than one nitrogen
impurity state, one extends from the single impurity Anderson
model (SIAM) [14] to the many impurity Anderson model
(MIAM). In this case the Hamiltonian is

H = Ho + H ′ (1)

where Ho is the Hamiltonian of the non-interacting system
given by

Ho =
∑

k

εc
kĉ†

kĉk +
∑

j

ε j b̂
†
j b̂ j (2)

where εc
k represents the extended |s〉 states and ε j is the energy

level of the j th impurity state. The c(†)k , b(†)j are the creation
(annihilation) operators of the extended and localized states
respectively. The second term in equation (1) describes the
interaction of the conduction band and the localized states as
follows:

H ′ =
∑

j,k

Vk j(b̂
†
j ĉk + ĉ†

k b̂ j) (3)

where Vk j describes interaction strength of a free electron with
the j th impurity level. In the MIAM each impurity energy
level interacts with the conduction band independently of other
impurity states and the impurity states do not mix with each
other.

2.1. Method of solution: the localized state—general

In order to obtain the retarded Green’s functions for
solving equation (1), the Matsubara functions of imaginary
frequency [9] are used. For the localized states we have

G j(ih̄ω) = {ih̄ω − ε j − �ret(ih̄ω)}−1 (4)

where �ret(ih̄ω) = V 2
j

∑
k ret(ih̄ω − εc

k) the retarded self-
energy. The subscript k has been suppressed in the interaction
term V 2

j assuming that it is independent of the reciprocal
vector. In this equation we have made the following
assumptions, upon which the results throughout the paper will
depend.

Our model follows the approach of O’Reilly et al
[6, 8, 22], for the formulation of the interaction term Vj and
also of the N levels j that will be dependent on the nitrogen
concentration and on the �–L valley energy separation. Also,
the results in this paper take the spatially averaged value for
the interaction term [12], which is dependent on the conduction
band wavefunction intensity on the nitrogen site. We comment
in the conclusions on the effect that this approximation will
have for each confined structure. The last approximation which
differentiates our approach from previous work, is multiple
scattering from the same impurity, which is expected to be
dominant in a dilute impurity system, as the one examined
here. All multiple scatterings from one impurity can be

summed into a closed expression [8, 9] (which includes the
self-energy of equation (4)) and then the scattering can be
summed over all scattering centres. Therefore, the total
scattering that arises has nitrogen concentration dependence.
In this way we are able to relate the magnitude of the imaginary
components which will be calculated next, to the nitrogen
concentration. Here we have tacitly neglected any change of
the self-energy of an impurity in the presence of another one.
These additional terms that would have to enter the self-energy
in Feynmann ‘crossed diagrams’, can be neglected.

Therefore, since scattering processes are independent, the
Green’s function for each | j〉 state is

G j(ih̄ω) = lim
δ→0+

{
h̄ω − ε j − V 2

j

h̄ω − εc
k + iδ

}−1

= {h̄ω − ε j − [� j (h̄ω)+ i	 j(h̄ω)]}−1 (5)

where � j (h̄ω) = Re{�ret(h̄ω)}, 	 j(h̄ω) = Im{�ret(h̄ω)} and
δ < 2 meV in our calculations. To evaluate this expression
we need details of the energy dispersion of the conduction
band which is compositional and confinement dependent. We
assume that the conduction band is parabolic with a constant
effective mass so only the confinement energy is different
between the bulk, QW and QWW cases. The compositionally
dependent conduction band [19] is fit analytically, for all three
cases discussed and has the form R(k) = Ca + C f sin kπ

α
+

Cb cos kπ
α

, for k > 0, where α is the lattice constant and Ca ,
Cb, C f other fitting constants [21]. In the previous equation,
the second term can be omitted as Cb � C f which means that
R(k) continues to vary parabolically with small k.

2.2. Method of solution: the localized state—QW
Ga1−x Inx NyAs1−y/GaAs case

Using the parameterization for the conduction band [21] an
analytic expression for the total retarded self-energy for each
impurity will be given for k‖ > 0 by

�ret(h̄ω) = y j lim
δ→0+

1

k1

∫ k1

0
dk‖

β2
j

h̄ω − R(k‖)+ iδ
(6)

where β j y1/2
j = Vj [5], y j is the concentration of the j th

impurity type and k1 = π/30 Å
−1

which corresponds to an
energy of h̄ω =1.9 eV. In principle k1 can be bigger but the
respective energies of interest are given for the above value.
Solution of equation (6) is complex. The real part when
C f → 0 and δ → 0+ is given by

� j(h̄ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αV 2
j

π
√
τ 1

{
log

(
(1 + cos k1π

α
)+ λ sin k1π

α

(1 + cos k1π
α
)− λ sin k1π

α

)}

if εCBM � h̄ω � εCBM + h̄2k2
1

2meff

αV 2
j

π
√
τ 1

{
arg

(
1 + 1

τ1

(
λ tan

k1π

2α

))

− arg

(
1 − 1

τ1

(
λ tan

k1π

2α

))}

if h̄ω < εCBM.

(7)

2
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(a)

(b)

Figure 1. Density distribution of localized states (a) for SIAM and
(b) for MIAM. In (a) and (b) grey stands for unmixed dispersionless
impurity levels and red dashed line for CBM of InGaAs. In (b), in
case A, the mixed pair/cluster state has small broadening
(	NN = 15 meV) and remains practically unshifted
(�NN = 0.4 meV), whereas in case B, it neither broadens nor shifts.
For single nitrogen, it is 2	N = 107 meV and �N = 23 meV.

with τ1 = C2
b − (Ca − h̄ω)2 and λ = Ca − Cb − h̄ω. The poles

of the | j〉 states are now defined through � j(h̄ω) as

h̄ω j = ε j +� j (h̄ω). (8)

The imaginary part	 j(h̄ω) of equation (6), which is related to
the impurity broadening, is

− Im[�ret(h̄ω)] = |	 j(h̄ω)| = α
V 2

j

τ
1/2
1

(9)

where τ1 was given in equation (7). 	 j(h̄ω) is defined as half
of the width of the spectral distribution of the impurity, which
has a Lorentzian lineshape due to its finite lifetime

ρ j(h̄ω) = 1

π

	 j(h̄ω)

(h̄ω − ε j −� j (ω))
2 +	 j(h̄ω)2

. (10)

Figure 1(a) shows the spectral distribution of the impurity level
before and after mixing in the SIAM case. Figure 1(b) shows
the spectral distribution for two generic MIAM cases: case A:
with the second level |NN〉 above the conduction band mini-
mum and case B: with the second level below the conduction
band minimum (CBM). The two cases are of interest as they
result in different effective masses at the conduction band min-
imum, hence different densities of states. In the former case
the pair/cluster level interacts with the conduction band and
the level is shifted slightly and broadened, while in the latter
for the pair/cluster state the interaction goes to zero, acting as a
strong scattering resonance. Figure 2 shows the broadening of
each impurity state as a function of the nitrogen composition.
We have assumed the two generic cases A and B for a 8 nm
QW of Ga0.68In0.32N0.02As0.98/GaAs. Based on Healy’s et al
formulation [6], we assume εN = 1.55 − 3.9y, where y is the
total nitrogen concentration. For case A, εNN = 1.25 − 3.9y
which implies that pairs will always lie above the CBM (for

j

Figure 2. Broadening of impurity states 	 j versus nitrogen
concentration for MIAM. In case A (solid squares) pair/cluster states
are above the CBM of InGaAs for all nitrogen concentrations, and
their broadening increases monotonically. In case B (grey triangles),
numbers 1, 2, 3 correspond to the position of pair/cluster states in
relation to the CBM as shown in the inlet. Biggest broadening is
observed when they are quasi-resonant with the CBM, due to largest
interaction at that point. In position 3 they act as truly bound states
with infinite scattering cross-section (at T = 0).

N = 2.5% they are quasi-resonant with an energy distance of
52.3 meV). For case B, εNN = 1.159 − 3.9y which means that
for N = 1.52%, εCBM = εNN. We conclude that the interac-
tion is stronger when the impurities are close to the conduction
band minimum and when their concentration is high.

2.3. Method of solution: the conduction levels—general

Conduction band Green’s functions are used to describe how
the perturbed |s ′〉 states are altered after mixing [8–11, 13].
Regarding this, our approach differs in the sense that we use
the assumptions and the results from section 2.2 for the fitting
function [21] and for the broadening of the impurity states
(equation (9)). The way the relative position of the pair/cluster
states to the minimum of the conduction band, affects the
mixed states is also examined here.

The Green’s function for the conduction band is given
by [20]

Gk(h̄ω) =
{

h̄ω − εc
k −

∑

j

V 2
j

h̄ω − ε j + i	 j

}−1

. (11)

Equation (11) yields three poles; the real and imaginary
parts represent the energy dispersion and the broadening of
the mixed subbands respectively. For MIAM, contrary to
SIAM [21], it is more difficult to obtain analytical solutions
for these states. The complex solutions of equation (11) are

h̄ω1 = 1

3

(
C1(y, k)+ 22/3 A3(y, k)− A2/3

5 (y, k)

21/3 A1/3
5 (y, k)

)
(12)

h̄ω2 = 1
3

(
C1(y, k)

− 22/3(1 + i
√

3)A3(y, k)− (1 − i
√

3)A2/3
5 (y, k)

24/3 A1/3
5 (y, k)

)
(13)

3
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(a) (b)

Figure 3. Broadening ωi
1, ωi

2, ωi
3 of the perturbed |s′〉 eigenstates ωr

1, ωr
2, ωr

3 correspondingly, for N = 2% for (a) case A, (εNN > εCBM) and
(b) case B, (εNN < εCBM). The magnitude of the broadening is linked with the percentage of localized nitrogen character 1 − |�c|2, which
depends on the coupling parameter and on the energy separation between localized and delocalized states. The dashed grey lines in
(a) indicate the broadening ωi

2 for N > 2%.

(a) (b)

Figure 4. Complex conduction band structure of Ga0.68In0.32N0.02As0.98 when (a) εNN > εCBM and (b) εNN < εCBM. The perturbed |s′〉
eigenstates are ωr

1, ωr
2, ωr

3 with their corresponding broadenings (figure 3) shown with red satellite lines. The localized character of |s ′〉 is
dependent on the strength of the interaction between the localized and the delocalized states and on the energy difference
|ε j − ωr

t | (t = 1, 2, 3) and is expressed by enhanced broadening.

h̄ω3 = 1
3

(
C1(y, k)

− 22/3(1 − i
√

3)A3(y, k)− (1 + i
√

3)A2/3
5 (y, k)

24/3 A1/3
5 (y, k)

)
(14)

where C1 = εc
k + εN + εNN + i(	N + 	NN) and h̄ω1, h̄ω2,

h̄ω3 correspond to the lower, middle and upper restructured
subbands respectively. Parameters A3 and A5 are given in the
appendix. In principle, analytical solutions for the real and for
the imaginary component can be derived, but their form is not
easily manipulated and their presentation exceeds the scope of
this paper.

2.4. Method of solution: the conduction levels—QW
Ga1−xInxNyAs1−y/GaAs case

We examine again the behaviour of an 8 nm QW system for
cases A and B. In the following calculations we assume one
confined state neglecting any higher lying ones. The energy
broadening, which is depicted in figure 3, is associated with the
projection of | j〉 states on the mixed |s ′〉 and corresponds to the
imaginary components of equations (12)–(14). For simplicity
we will represent the solutions h̄ω1, h̄ω2, h̄ω3 respectively as
ω1, ω2, ω3. In both cases, upper state ωr

3 is localized nitrogen-
like near k‖ = 0 and more conduction band-like at higher k‖.

Interaction of middle state ωr
2 with single nitrogen state down

the in-plane vector, results in increasing broadening ωi
2 (for

both cases A and B). Also, the lowest state ωi
1 is bigger in case

A than in case B, where the broadening drops quickly after
k‖ ∼ 0.07π/αA−1, as the admixture component 〈ψNN|Ĥ |φc

k〉
does not contribute in the calculation. Finally, ωi

2 increases
faster along the plane vector in case B, which is attributed to
the repelling forces on ωr

2 arising from the localized states.
In comparison to SIAM [21], broadenings here are smaller
about 10–35 meV for each one of the mixed states, but if they
are all summed, the total broadening is maintained. The full
conduction band structure for both cases in shown in figure 4.
This has been compared in detail with the BAC model in [21].
There is significant difference in the energy dispersion ωr

1

between cases A and B, which is important, as this is related to
the variation of the effective mass with further implications on
the density of states.

Using tight-binding calculations and LCINS [8] the
fractional �c

1 character of the perturbed subbands at the CBM
has been shown to vary in a non-monotonical way, following
the variation of the effective mass, meff. It is also interesting
to see how �c

1 varies as a function of the reciprocal k vector.
The fractional �c

1 character has been given by Vaughan and

4
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Figure 5. Fractional �c
1 character of the mixed subbands versus the

in-plane k|| vector for N = 2%. Behaviour can be easily explained by
looking also at the broadenings in figure 3 and the dispersion profile
in figure 4.

Ridley [13] as

�c
1 =

[∑

j

V 2
j

(ε j − h̄ω)2 + [	 j −	(h̄ω)]2
+ 1

]−1

. (15)

The broadening term in the denominator has a very small
effect in the final outcome. Using our previous results as input
parameters, it is straightforward to extract information for �c

1
for each subband. To do so, the term h̄ω in the denominator is
replaced by the real parts ωr

1, ωr
2, ωr

3 from equations (12)–(14)
and the broadening 	(h̄ω) by the imaginary parts ωi

1, ωi
2, ωi

3
of the same set of equations. Figure 5 shows the dependence
of �c

1 on reciprocal vector when εNN > εCBM as in figure 4(a).
Based on information from figure 5 and the bandstructure from
figure 4, it is easy to associate the variation of �c

1 with energy
h̄ω. This is important because �c

1 enters the expression of
nitrogen induced scattering mechanism wN(h̄ω) in bulk and
QW structures in dilute nitrides [13, 15].

3. The density of states

It is interesting to see how the density of states ND in the dilute
nitride system is modified due to the strong perturbation arising
from the nitrogen impurities. The density of states cannot be
derived using the effective mass meff as this goes to infinity
after mixing. The density of states N ′

D is derived using the
imaginary part of the Green’s functions [11, 12] giving

N ′
tD = − 1

π
Im

∫
Gk(h̄ω)NtD(ε

c
k)dε

c
k (16)

where t refers to the unconfined dimensions. Using the
following definitions

A(y, h̄ω) = h̄ω −
∑

j

(h̄ω − ε j(y))V 2
j (y)

(h̄ω − ε j(y))
2 +	2

j(y)
(17)

B(y, h̄ω) = −
∑

j

V 2
j (y)	 j(y)

(h̄ω − ε j(y))
2 +	2

j (y)
. (18)

Im Gk(y, h̄ω) can be written as

Im Gk(y, h̄ω) = − B(y, h̄ω)

[A(y, h̄ω)− εM]2 − B(y, h̄ω)2
(19)

where εM is the energy at CBM. Inserting equation (19)
in equation (16) we derive slightly different expressions
(from [13]) for the perturbed DOS:

N ′
3D(h̄ω) = − 1

4π2

(
2meff

h̄2

)3/2

× A(y, h̄ω) sin θ + B(y, h̄ω) cos θ

{A2(y, h̄ω)+ B2(y, h̄ω)}1/4 (20)

N ′
2D(h̄ω) = meff

2π h̄2

(
1

2
− 1

π
arctan

[
A(y, h̄ω)− εn

B(y, h̄ω)

])
(21)

where θ = 1
2 arg[−A(y, h̄ω) + iB(y, h̄ω)]. The 1D DOS is

given by

N ′
1D(h̄ω) = − meff

2π h̄

sin θ

{A2(y, h̄ω)+ B2(y, h̄ω)}1/4
. (22)

Figure 6 shows the 3D (3 dimension) (bulk), 2D (QW)
and 1D (QWW) perturbed density of states for two nitrogen
concentrations of 0.5% and 2.5%, assuming both a variable
broadening 	 j (dependent on nitrogen concentration) and a
constant one. The variable broadening stems, as explained in
section 2.1, from the assumption of multiple scattering by the
same impurity. Here we test the implications of our assumption
on the density of states by comparing them with previous
results that consider a fixed 	 j [12, 13].

First of all in both cases, the density of states exhibit the
same trends; two distinct peaks at the nitrogen impurity levels
whilst far from them they tend to reshape to the parent density
of states, depicted with grey line. The peaks are redshifted
with increasing nitrogen because their position depends on
the nitrogen concentration and because the strength of the
interaction increases, shifting their position after mixing. Also,
for all structures, at lower energies, there is a band tailing of
the density of states observed in the bandgap. Finally, the only
qualitative difference between the 3D, 1D and 2D case is that
in the latter no singularity-like characteristics are observed at
the impurity levels.

Comparing now in figure 6 the two approaches of a
variable (calculated) and a fixed broadening with nitrogen
concentration we observe that they are in very good agreement.
There is however some deviation observed at the impurity
energy levels. For fixed broadening of the impurity (here
we assume that 	N = 50 meV, 	NN = 20 meV) the
characteristic peaks of the mixed DOS (observed at impurity
level energies) scale with nitrogen concentration. In other
words, we observe in all three graphs of figure 6 a very small
feature for N = 0.5% and a much more distinct one for
N = 2.5%. On the other hand, we see that our approach of
calculated broadening (	N = 15 meV, 	NN = 3 meV for
N = 0.5% and 	N = 66 meV, 	NN = 13 meV for N = 2.5%)
gives somewhat different characteristics; for all structures the
peak at the single nitrogen level (h̄ω 
 1.5 eV) has almost the
same magnitude for small and high nitrogen. This may seem
odd at a first sight and the intuitive question of why the peak

5
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Figure 6. Restructured DOS in the (a) bulk, (b) QW and (c) QWW case for N = 0.5% and 2.5%. Lines in (b) and (c) follow the notation of
label in (a). ‘Fixed’ and ‘calc’ refer to the fixed and the calculated broadening of the impurity states, respectively. Grey lines with no symbol
refer to the parent InGaAs DOS. The fixed broadening here is 	N = 50 meV and 	NN = 20 meV whilst the calculated for N = 0.5% is
	N = 15 meV, 	NN = 3 meV and for N = 2.5% is 	N = 66 meV,	NN = 13 meV. Severe distortion at the impurity levels and band tailing
inside the band gap is observed. Despite the small difference in shape between the two approaches at the impurity levels, the area of the DOS
under the curves remains exactly the same.

for small nitrogens does not smear out, may physically arise.
As has been pointed out before in this section, this is a feature
that comes out naturally based on the assumption of multiple
scattering. However, we believe that the figure of merit for the
validity of the assumption should be the integrated density of
states and not their absolute magnitude at the impurity levels.

We have calculated the integrated density of states and
a deviation between the two approaches of less than 1%
on average has been found for three nitrogen concentrations
(0.5%, 1.5%, 2.5%) for all 3D, 2D and 1D structures. The
integration has been carried out both in the vicinity of the
impurity levels and in the whole energy spectrum depicted in
figure 6. For example, it is clear in figures 6(a) and (b) that at
the single nitrogen level the peak for calculated broadening is
more prominent but at the same time its width is smaller than
that of fixed broadening. Therefore, we believe that the two
approaches are in qualitative and quantitative agreement.

In case of high localization, in other words for 	 j → 0
the density of states at the impurity level becomes infinitely
high, which is physically reasonable.

Knowledge of the exact density of states is important since
it enables us to proceed with calculations on optical properties
and on carrier transport in 2D and 3D GaInNAs structures.

4. Discussion and conclusions

We have used the SIAM and extended it to derive a MIAM to
describe the GaInNAs material system in bulk and confined

geometries. We have used the Matsubara Green’s function
approach to derive analytical expressions for mixed conduction
band and N impurity levels in the system. Using a fitting
function for the parabolic conduction band of InGaAs and
using multiple scattering by one impurity we have derived
analytical expressions for: the mixed impurity levels, the
conduction band structure and the density of states. Nitrogen
impurities are found to change drastically the shape of the
parent DOS. The information gained using this approach
goes beyond that obtained from the usual BAC model. We
have explicitly treated two different cases, based on the
energy position of the N–N pair/cluster states relative to the
conduction band minimum and have shown how this affects
the system’s behaviour. Also, it is straightforward to compare
the results on the band structure derived from the MIAM to
those derived from the BAC model and see that they are in a
general agreement.

We approximate the distribution of pair and cluster states
by one averaged energy level in this model. By extending
the MIAM we could consider a number of levels within the
distribution but we believe that by varying the energy level
within this range we have essentially explored the importance
of the energy levels within the distribution. Energy levels
closest to the conduction band minimum are observed to have
the strongest effect. We have used various distribution types
to approximate the more realistic non-symmetrical distribution
of the impurity levels [5, 23]. It is valid to say that we can
model a non-symmetrical distribution with one effective level,
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if this is recalculated with an effective mean (weighted by
the probability at each energy). In this meta-stable system
the actual concentration of each type of state will be changed
upon growth and may be controlled through growth or post
annealing [18]. The aim of this paper was to understand
how the level of these states influences the bandstructure and
DOS. We have also used spatially averaged interaction strength
within this model. For confined systems the interaction
strength will depend on the overlap of the wavefunction of
the confined conduction band level with the nitrogen defect
and will be larger if the nitrogen can be placed in the
centre of the QW or QWW [18]. Currently site position of
nitrogen impurities cannot be controlled so site-averaging is
appropriate.

The density of states is important for the analysis of
optical and transport studies. In transport studies the electron
scattering from an alloy is often calculated considering
scattering from one crystal and considering the replacement
atom to scatter the electron [17]. In this treatment this does
not happen as the electron eigenstates of the coupled system
already account for the incorporation of nitrogen into random
lattice sites. The effect of this is the band gap shrinkage
and altered effective mass. However, non-randomly situated
nitrogen atoms and interstitial nitrogen atoms are still able to
scatter the electrons and must be therefore considered. In the
evaluation of scattering processes (e-phonon, e-defect) in the
restructured Ga1−x Inx NyAs1−y system we should make use of
the new DOS [16] (section 3) rather than the parabolic one
of the host matrix. In optical studies the density of states is
reflected in material gain which may be tuned for broad band
or other applications using this approach.
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Appendix. Parameters of the eigenstate expressions
of 3 BAC model

The parameters A3 and A5 of equations (12)–(14) are given
below.

A3(y, k) = −C2
1(y, k)− 3{−εc

k(εN + εNN)

− εNεNN + V 2
N + V 2

NN +	N	NN (A.1)

− i[	N(ε
c
k + εNN)+	NN(ε

c
k + εN)]}

A5(y, k) = A4(y, k)+
√

4A3
3(y, k)+ A2

4(y, k) (A.2)

where C1 = εc
k + εN + εNN + i(	N +	NN) and

A4(y, k) = −2(εc
k

3 + ε3
N + ε3

NN)+ 3A1(y, k)

+ 3iA2(y, k)+ 2i(	3
N +	3

NN) (A.3)

where

A1(y, k) = εc
k

2
(εN + εNN)+ εc

kε
2
N − εNεNN(4ε

c
k − εN)

+ ε2
NN(ε

c
k + εN)− 3V 2

N(ε
c
k + εN − 2εNN)

− 3V 2
NN(ε

c
k − 2εN + εNN)−	2

N(ε
c
k − 2εN + εNN)

+ 	N	NN(4ε
c
k − 2εN − 2εNN)−	2

NN(ε
c
k + εN − 2εNN)

(A.4)

and

A2(y, k) = εc
k	N(ε

c
k + 2εN)− 2	N(ε

2
N + 2εc

kεNN − εNεNN)

+ 	N(ε
2
NN − 3V 2

N + 6V 2
NN)+	NN(ε

c
k

2 + ε2
N)

+ 2εc
k	NN(εNN − 2εN)+ 2εNN	NN(εN − εNN)

+ 3	NN(2V 2
N − V 2

NN)−	N	NN(	N −	NN). (A.5)
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